Friday, April 7, 2017

Plants vs Zombies: The GMO Edition

I know. It's been a while... Things are a bit rough. I've written a few pieces over on Medium, if you want to check them out.

So, in this blog post, I wanted to write about "superweeds", what they are, how they're related to GMOs, and some misconceptions about them. The first thing to know is that "superweed" is not a scientific term. Searching through the NIH's database of scientific publications, I only found one paper with the term "superweed", and it's a commentary, not a research article. Yet "superweed" is a term used ALL the time on websites that lobby against GMOs, like this article entitled "Superweeds: A Frightening Reality" written by the "Just Label It" campaign. 

My understanding of the term and its use is that "superweed" describes weeds that don't get killed by herbicides. They don't grow faster or stronger than other weeds. They arise due to selective pressure from the herbicide. Spouse, don't freak out. I'm going to explain this to you in detail, using your favoritest of analogies: zombies.

Imagine that the zombie apocalypse takes places tomorrow and is caused by a virus. Imagine that 1% of the human population had some sort of mutation in their DNA that made them resistant to the virus. That means that only 1% of the human population would survive. It also means that 100% of surviving humans are resistant to the zombie virus. The surviving humans would mate with one another and from that point onward, all humans would have the mutation that makes them resistant to the zombie virus (assuming, of course, that humans wouldn't mate with zombies... That would make a crazy scifi movie...). You could say that the surviving humans are "superhumans". 

But did the zombie virus cause the mutation? No, it did not. The superhumans were there all along. The zombie virus placed pressure on the system, and the mutant humans were "selected" because they lived.

A mutation that's shared by 1% of humans is a relatively large number of people. Why would so many humans have it? Well, maybe it makes humans resist other viruses too and gives them some sort of advantage. Or maybe at some point throughout the course of our evolution, there was a similar virus that wiped out a good chunk of our population, and our ancestors (human or not) survived because of the mutation. But since there hasn't been a zombie virus since that ancient plague, we haven't really needed that mutation. With no selective pressure, it may be why most humans no longer have the mutation.

But let's assume that there has never been any pressure for this mutation to remain in our population. In that case, very, very, very few humans, if any at all, would have the mutation making them resistant to the zombie virus. It would be pure luck if a human had that particular mutation, since mutations happen randomly in our DNA.Given how our species reproduces, there would need to be two humans who won this genetic lottery at the same time in history and in close proximity of one another, so that they could mate and have superhuman offspring. Otherwise, humans would get wiped out.

Pretty unlikely, right? Still, the zombie virus did not cause the mutation. 

Now, if the zombie apocalypse were part of a plan of some evil mastermind, the villain's best chance of success would be to release two viruses into the environment at the same time: let's say a zombie virus and a flesh-eating virus. The odds of a single individual or population being resistant to both viruses would be extremely, extremely, rare. 

So, that's probably as far as I can take the zombie apocalypse analogy.

Weeds that are resistant to herbicides are bound to arise, even with the best of herbicides. The same is true of antibiotic resistant bacteria. Given enough time, they'll be found. If a herbicide is well designed, no existing weeds will be resistant to it (i.e, in our analogy, a good herbicide wouldn't leave 1% of weeds behind). This is tricky, because there are so many different weeds to combat. But, the herbicides don't cause the resistance. Neither do antibiotics. Resistant bugs and resistant weeds win the genetic lottery and thrive. Since bacteria don't need to mate, it's even easier for an antibiotic resistant bug to spread.

Weeds that evolve to become resistant to herbicides have existed WAY before GMOs, because we've been using herbicides in agriculture before GMOs were commercialized. There are even weeds that have evolved to look like crops, so that they can evade hand-weeding. It is for these reasons that farmers are encouraged to practice good management to control weeds. This means that they're encouraged to rotate crops, to use herbicides that impact the plant in different ways, and to use mechanical methods to kill weeds, too. And although we may not like it, using two different herbicides makes sense and ag companies are starting to introduce GMOs with the ability to resist two herbicides. The odds of getting a weed that is resistant to both herbicides is much less, but again, it's only a matter of time before one arises.

Glyphosate has been a pretty good herbicide in terms of the development of herbicide resistant weeds. But because it was used on so many acres of land, the odds of finding a weed that "won the genetic lottery" increased. Consequently, glyphosate-resistant weeds have been identified in many areas and are a problem for some farmers. 

The term "superweed", when used in the context of the GMO debate, evokes imagery of a weed that's about to take over the planet. As I highlighted at the beginning of this piece, you'll see references to superweeds all over anti-GMO websites. Herbicide resistant weeds are a problem in agriculture, but it's far from being unique to GMO crops. So ask yourself why such language is being used, and be aware if its because the website in question is trying to manipulate your emotions.

For more on this topic, I encourage you to read this 2-page summary on superweeds or to look at this website. And follow @wyoweeds and @LynnSosnoskie on twitter (can't stress this enough).

Monday, November 14, 2016

The Future of FrankenFoodFacts

To my spouse and all my readers,

The past couple of days have been interesting, to say the least. I'm writing this blog a few days after the US elections, where in an incredible upset, a candidate that believes vaccine cause autism and does not believe in climate change was elected into office. There's a lot of other things about the president elect that concern me, but for the sake of this blog post, I'm going to keep it science focused. 

I write this article, genuinely struggling to figure out how to move forward as a science communicator. That people are in echo chambers, that experts are ignored, and that narratives have a strong appeal are things that I have long known, but now more than ever I struggle to figure out how to break through all that. And I'm fairly certain that it's not in the writing of this blog. Because if anyone wants to find out about GMO safety, all the information is already available to them. There is little that I can say that hasn't already been said.

In my draft blogs, I currently have a post entitled "Brexit and Organic Consumers Association". In the post, I was outlining the elements that these two movements have in common: appealing to people's fears and shunning expertise. I had written: "So it surprises me to no end that the public feels that expertise in certain topics is no longer relevant. And I don't know what to do about it, because in the opinion pieces I've written outlining the importance of experts and consultants, and the irony of having taxpayers fund their work and ultimately reject the suggestions that these experts make, I get comments from individuals accusing scientists of being "know-it-alls" or of being arrogant. Here's an example:
To some extent, I understand. An individual has an opinion and wants that opinion to be heard and respected. But we aren't all well versed in everything. I don't believe to know the solution to economic problems any more than I know how to build a deck for my back yard. I feel comfortable deferring to experts on both topics, not just the latter.

The problem is that when we turn to the wrong people for advice, they often provide incorrect information. Team Brexit said that the opinion of experts were not relevant. Bernie Sanders recently spoke about the dangers of GMOs and featured Jeffrey Smith from the so-called "Institute of Responsible Technology", whose lack of scientific knowledge has been highlighted in the past. Donald Trump has said that vaccines cause autism even though they don't." 

Rather than listening to experts, be they farmers speaking about agriculture, economic experts warning us about tax policies, scientists yelling at us about climate change, or military experts writing about a candidate's rhetoric, what ends up happening is that we believe in opinions that validate the biases we already hold.

The individuals who read this blog are already inclined to believe its content. I started this blog to document my journey as I learned about transgenic crops. With time, as I felt more certain about the safety of these crops, the tone and focus of the blog changed and I considered myself more of an advocate for GMOs. I will continue using this space to document my learning, but I don't think I'll continue promoting it. The people who don't believe in GMO safety aren't going to read it and I don't have the resources or the time to promote this blog so that it enters their sphere.

I'm not quitting science communication. Far from it (although a HUGE part of me does want to quit, to focus on my career so that I can further increase my income and my kid's success, and I'm working very hard on quieting that voice). Here's what I think I'll be doing going forward:

  • Focus on educating kids before their minds need to be changed. 
    • To this end, I'll be working more closely with Biology Fortified to create resources and tools for educators
  • Work with Moms4GMOs to try to get our message into new outlets and publications, so that we can decrease our reliance on social media as the primary method to broaden reach.
    • Social media bubbles don't pop very easily. The more we rely on social media, the more we're just preaching to the choir. 
    • The stark reality that social media has contributed extensively to the decline in factual information, and that speaking to kids and educators wouldn't necessarily rely on social media makes this option even more appealing.
I'm more than happy to answer questions and review papers, so if you have any, please send them my way. 

Monday, August 29, 2016

I Expose My Family to Carcinogens Everyday And So Do You

Last year, the International Agency for Research on Cancer (IARC) classified glyphosate, a common herbicide, as a probable carcinogen. I've been asked how it is that I can ingest "a known carcinogen",
"The Globally Harmonized System sign for carcinogens,
 mutagens, teratogens, respiratory sensitizers
and substances which have target organ toxicity." Wikipedia
so I'm going to take the time to outline what the IARC does, the difference between the IARC's ranking and risk, and why I expose myself and my child to known carcinogens everyday (a shout out to @mommyphd for editing this post).

First, it's important to note that the IARC's categorization of glyphosate contradicts statements from many other organizations including the European Food and Safety Authority. Second, the IARC's ranking has been controversial due to potential conflicts of interest. Third, to explore the data behind the IARC’s categorization, I highly recommend this blog post by Dr. Andrew Kniss. For the sake of simplicity, I'm writing this piece assuming that the IARC's ranking is correct and ethical.

What is the IARC?

The IARC is an agency of the World Health Organization and it reviews data regarding a substance's carcinogenicity to identify hazards. Their job is to answer these questions: Is there any evidence that substance X causes cancer? How much evidence is there? Based on the strength of data, not the likelihood of harm (the actual risk), it categorizes substances as "probably not a carcinogen", "not classifiable", "possibly a carcinogen", "probably a carcinogen", and "a known carcinogen". The IARC has only ever classified one substance as "probably not a carcinogen". If you’re not sure about the difference between hazard and risk, here’s an extreme example: is a meteorite striking me a hazard? Yes… It is. I’d probably die or get injured if it struck me. Is it a risk? No. Apparently, there’s only a 1 in 1,600,000 chance that I’d get hit by a meteorite in my lifetime and die.

That is the extent of the IARC's role: to determine the level of evidence for whether a substance has the potential to cause cancer. It doesn't tell you the level of risk or what you can do about it. That's why the IARC's classification is so confusing: it lumps processed meat in the same category as smoking. But does that mean that your risk of getting cancer from smoking two packs a day is the same as your risk of getting cancer by eating a pastrami sandwich? No, it doesn't. Does it tell you if your risk is the same if you smoke a cigarette once in your lifetime or if you eat 3 pastrami sandwiches a day? No, it doesn't. For that, we need to assess the risk of the substance and that is often done by public health organizations.

The Carcinogens We Encounter Every Day
Whether you're aware of it or not, every day you're choosing to expose yourself to at least one known carcinogen. That's because UV rays from sunlight are carcinogens. One of my son's favorite lunches is a sliced ham sandwich. And that's a carcinogen. There are many other possible and probable carcinogens that we knowingly expose ourselves to: my husband and I have cell phones, we eat red meat and french fries (the latter have acrylamide), and some of our lotions have aloe vera extract. Even hot beverages that we drink were recently classified as “probably a carcinogen”.

But thanks to public health officials that have assessed the risk and provided guidelines on mitigating risks in my life, my kid uses sunscreen when he's out in the sun and we try to stay in the shade. We don't eat red meat every day, and there are no public health guidelines on avoiding aloe vera extract because the evidence for actual risk of carcinogenicity is weak.

What About Glyphosate? What Should I do?

In the case of glyphosate, the World Health Organization has stated that the amount of glyphosate residues found in our food is unlikely to be carcinogenic. In other words, the risk to my family is negligible. The risk to pesticide appliers may be higher and worker safety organizations may provide recommendations specific to pesticide application for such individuals to mitigate their risks.

So many things around us are potential hazards and could possibly kill us some way or another. However, it’s more important to understand the level of risk that something poses in making decisions about how to keep ourselves and our families safe. It’s also important to note that we cannot avoid hazards: even something as simple as eating a salad, be it organic or conventional, has the risk of a foodborne illness. What’s important is that we make informed decisions based on genuine risk, otherwise we live our lives unnecessarily fearing our environment and our food. We could live cooped up inside our houses, in a "chemical-free" bubble with UV-reducing windows or shut-out curtains, but that's not what our public health officials recommend. Following their recommendations ensures that we reduce the risk for the things that can harm us by using sunscreen, eating plenty of properly washed fruits and veggies, getting our vaccinations on schedule, using seat belts and having car seats installed properly, etc. We should focus our efforts on following guidelines put forth by our public health officials and medical institutions, rather than creating boogie-men out of low-risk items in our environment.

Sunday, August 7, 2016

Farmers and Scientists Are People, Too

Last month was the spouse's 20th high school reunion in his home town of Plainview, Texas. I'd been to Plainview a few times to visit his family and friends, but never over the summer. He had always said that I wouldn't enjoy the heat, so we had always visited in December.

So it was my first time visiting the state in temperatures above 100ºF (for all you awesome metric people, that's about 40ºC). It was also my first time at a reunion. Before flying out, the spouse encouraged me a few times to try to organize interviews for my "Better Know a Farmer" series, however, it was not possible given the duration of my trip.

Needless to say, Plainview, Texas is very different from any place I've lived. There used to be a very large meat processing plant for Cargill, which shut down in recent years due to the difficulty of maintaining cattle in the increasingly dry climate. Currently, one of the largest employers is a Walmart distribution center. But agriculture is at the heart of the area: the ads in the airport were for field irrigation systems and for agricultural technologies. The dust bowl is more than just a chapter in history books.

View from our plane when landing in Lubbock, TX
I got to chat with people between the various events for the reunion. Many them held jobs associated with ag, ranging from farmers working the land to individuals repairing equipment on ranches. They shared their challenges and aspirations. They spoke about biotech crops and how these have helped them. They told me about the drought, how it has impacted them and what they've lost. It made me think a lot about how stress resistant crops could help such regions in the not-too-distant future, and how such crops will become increasingly more important.

To most of us, farming is a concept in a text book. It's the lyrics to Jason Aldean's "Amarillo Sky". But to the people I met, it's their livelihood and it's their day-to-day. It's a source of pride and a legacy that has been handed down to them and they hope to pass on to their children.

I was recently reminded of Mommy, PhD's "#ScientistsArePeople" campaign, which launched to highlight that we scientists are diverse, everyday people: we aren't drones intent on taking over the world, motivated exclusively by money. Sweeping statements that paint scientists as a uniform group of evil individuals couldn't be farther from the truth. Similarly, painting farmers as a group of individuals who are intent on poisoning the earth and dousing crops in pesticides couldn't be more inaccurate.

I'm not naive enough to believe that everyone follows the rules or that everything is rainbows and unicorns. I've worked with people that have been genuine douchebags and whose car tires I dreamed of slashing. But such individuals are far from being the majority. Most people I have worked with want a job where they can make a contribution to society and earn fair pay. I believe scientists and farmers are generally no different.

I want you to think carefully about your home: how you want to keep it safe, how you want to pay off your mortgage or your lease, and how you want to have a healthy environment for you and your kids/pets/friends. Would it make any sense for you to use chemicals that are not designated for household-use in this space or use more than instructed? Would it make any sense for you to introduce compounds that would knowingly damage the building you're handing down to your kids? Then why on earth would you believe that a farmer would do this to the lands where they work and live? As kids ran around at the roller-skating rink at the family event for the reunion, I wondered why anyone would believe that a farmer is any different than themselves.

There are different fora where you can engage with farmers and ask questions. I recommend Food and Farm Discussion Lab and Ask The Farmers (both are on Twitter). I encourage you to ask questions, rather than making assumptions about their practices and work.

Monday, July 18, 2016

Sources of Information about GMOs

Oftentimes when I start a discussion about GMOs with someone online, it turns into a discussion about sources. The person that I'm having the discussion with doesn't trust my sources. I, in turn, don't trust theirs. Last week, I finally sat down to outline why I don't trust some of the most popular anti-GMO sites.

The basis of my argument is this: if a site regularly provides incorrect information on other topics, why would you believe that the information they provide on GMOs is correct? If the site does not accept the scientific consensus on vaccines, why would you believe its editors/authors when they say that there's no consensus on GMOs? Of course, if you believe that vaccines are not safe and are full of toxins, then that's a whole other story. If you believe that the CDC is set out to reduce our population, then there's a lot more that we'd have to discuss.

So here are some of the sites that I covered. I made the graphics for my Facebook page and you can find them there, too.

1) Natural News

Natural News' coverage of the Zika virus highlights the "click-bait" nature and fear-driven basis of their content. The headlines below are from January 29th through February 11th, yet in that short period of time, the theories provided are all over the place and even contradict one another, as if the editors were trying to figure out which generated traction: vaccines, GMOs, government conspiracy, and finally, Monsanto. This last story trended for several days on Facebook. To make matters even worse, Natural News sells organic insect repellent that can protect you from the GMO-mosquitoes-that-have-been-vaccinated-with-Monsanto-pesticides-in-a-government-funded-study for the mere cost of $14.95

2) The Organic Consumers Association

The OCA frequently writes about the alleged dangers of GMOs. However, they also have many articles about the "dangers" of vaccines, including the thoroughly debunked myth that vaccines are linked to autism. The OCA also touts the benefits of homeopathy, although its efficacy has also been debunked.

The OCA's support of such ideas highlights the fact that they are not a reliable source of information on scientific arguments.

3) March Against Monsanto

The March Against Monsanto organization has some noble goals: decreasing the influence that companies have in our political system, fighting to do what's best for our planet, and others. In the past, I've outlined how I share many of these perspectives. However, when it comes to the actual science, March Against Monsanto is truly lacking. Not only does the organization fight against vaccinations, but it shares content about "chemtrails" and the dangerous notion that HIV is a man-made virus. These ideas, which can be classified as nothing but conspiracy theories, highlight that the organization's articles about science are not evidence-based.

4) Dr Mercola

Dr Mercola is an osteopath whose website is one of the more popular sources of information about alternative medicine. He also sells a lot of supplements. In fact, most of his articles tie in to a product that he sells on his website. However, many of the claims in his articles are untested, and the FDA has issued several warnings. Most recently, he settled with the FTC for up to 5.3 million dollars for claiming that his tanning beds reduced the risk of cancer. PLEASE read this news article, which highlights the dangerous nature of some of his claims. It also points out the vast resources that Dr Mercola has accumulated with his untested, unproven, online empire.

In summary, if a website:

  • shares conspiracy theories
  • posts articles with conflicting information about popular topics with no explanation on why the information conflicts
  • claims that the only item that will help you is the item that it sells
  • shares information contrary to what the major health and scientific organizations believe to be true
then why would you believe such a website?

Monday, July 4, 2016

NaturallySavvy's "Top Ten Reasons to Avoid GMOs"

A few days ago, I found myself reading a list entitled "What's So Bad About GMOs? Top Ten Reasons to Avoid Them" (archived here). I first stumbled upon when they were demonstrating the "toxic" properties in tampons by performing an experiment worthy of a 3rd grade science fair project, in efforts to scare the bejezuz out of you and convince you that their organic femcare products were much better.

I'm going to look over this Top Ten List and figure out if there's any truth to it. I've always tried to have a positive tone in what I write, but I'm pretty sure I'm going to fail miserably today.

(NOTE: I started writing this post back in November, soon after half of the people where I worked had gotten laid off, including myself. Yes... #ScientistsArePeople who get laid off, in this case due to corporate restructuring. Needless to say, I had a lot of pent up rage, so this was probably a healthy way to funnel all that energy. In retrospect, the post seems a bit rage-y, but I'm still going to go ahead and publish it, in the hopes that someone will look for an article debunking the NaturallySavvy piece. If you're not in the mood to read snark, stop reading after bullet #1. Consider yourself warned.)

Where's the syringe in the corn??
Or the creepy scientist that always hovers over GMO corn?
1. Are they safe? The article from NaturalSavvy says that although seed developers claim that GMOs have met safety requirements, "long term studies haven't been done on their impact to the human body." Seed developers are not the bodies that claim that GMOs have met safety requirements. The FDA, USDA, and other regulatory bodies are. Just because the writers at NaturallySavvy feel that long term studies are needed doesn't make it so. In the past, I've reviewed why long term human studies are difficult to conduct. Briefly, since GMOs are substantially equivalent to their non-GMO counterparts, there is generally no mechanism by which there could be an impact on the human body. Tests for allergenicity are conducted to ensure that the protein that is introduced is not an allergen. Most people expect GMOs to be tested like drugs, but drugs are designed to cause a change in the human body. Since drugs are altering something in humans, it's important to know the side-effects that they may cause and whether or not they're causing the anticipated effect (i.e. is it better than placebo). In contrast, GMOs are designed to be equivalent to their non-GE counterparts. GE crops which ARE designed to impact human health, such as vitamin-A enriched rice (i.e. Golden Rice), should be tested in humans.

2. Known health risks: The article from Natural Savvy states: "What we do know is that when genetic modification happens, genes are forced to express certain traits (including pesticides). To do this, the scientists "turn on" all the gene's components, which can mean releasing allergens that would normally not be expressed in a non-GMO variety. Experts like Jeffrey Smith suggest this is directly related to the rise in health issues." For the first time in this blog's history, I will ask: "WTF??" What does that string of random, science-y sounding words even mean? To express certain traits, scientists turn on all the gene's components? And somehow turning on "gene components" means that this would release allergens? And then the article has the major cojones to say that Jeffrey Smith, a person with no scientific training, is an "expert"?? In case you aren't familiar with my blog's history, I spent over half a year reading the section on Health Risks from Jeffrey Smith's website and failed to find a single one that was true. Anyway, I can't debunk this because that word salad is actually verbal diarrhea of the Chipotle variety. 

3. Heavy use of toxic pesticides and herbicides: The article claims "By design, genetically modified seeds require pesticides and herbicides." That is inaccurate in the sense that some genetically modified crops designed to withstand herbicides. At the same time, no GMO requires herbicides: farmers can technically choose not to apply any. Most importantly, there are GMOs that have nothing to do with pesticides/herbicides, such as the Rainbow papaya, which was designed to be resistant to the ring-spot virus, and saved Hawaii's papaya industry. And what about the Innate potato, which resists bruising and browning and will consequently cut back on food waste? Transgenesis is a method used to generate crops and lumping all the crops generated with the technique into a single category is disingenuous. It is important to note that there are non-GE crops made to resist pesticides as well, such as Clearfield seeds (made through mutagenesis) or SU canola (made by gene editing).

4. Pesticides and digestive health: The article claims that pesticides "negatively impact the gut bacteria of humans" and points to Jeffrey Smith's movie as a evidence. A movie does not evidence make. Show me the data. Unfortunately, documentaries are a narrative and are not peer reviewed. The film makers can choose to portray only one story/perspective in that narrative, and as such, they are often highly biased.

In the past I've written on the topic of GMOs and the gut microbiome, and have reviewed several papers on the topic. None of the papers point to negative health impact. But don't let that get in the way of the outstanding evidence in the movie!

I'm losing all hope for this Top Ten list from Naturally Savvy...

5. Cancer: The top ten list from Natural Savvy states: "Both pesticides and GMOs have been connected with an increased risk of certain types of cancer. There are additional health concerns too including reproductive issues, autism and even heart disease." The reference in that statement is to a news article from 2012 that covers the publication of a scientific article which has since been retracted due to its inherent crumminess and republished elsewhere. Many scientists and organizations have written about the notorious Seralini study, which was a 2-year feeding study on rats claiming that the GM feed and low levels of glyphosate cause tumors and other health impacts. Despite claims from activists that the findings from the paper were ignored or that institutions were paid off to refute the paper, Seralini's paper led to several in-depth reviews and studies (see information here from the EFSA and information here about the GRACE project).

As for the sentence about alleged reproductive issues, autism, and even heart disease: no, no, and what???

6. Environmental impact: Naturally Savvy claims: "GMO crops and their companion pesticides and herbicides wreak havoc on the environment including polluting air, water and soil. Glyphosate—marketed by Monsanto as the herbicide Roundup—is in effect, an antibiotic, which can destroy soil quality and thus impair the plant's nutritional value as well." You know, all the farmers that I've spoken to say that they keep buying GM seed year after year because it destroys their soil quality and consequently, the crops. They don't care if the crops have lower yield due to the soil that's been destroyed. They just want to leave their mark in the world by contributing to the environment's demise.

Seriously, how is it possible that this article has 15K facebook likes??

7. Superbugs and superweeds: Naturally Savvy claims: "Despite the claims that pesticides and GMO crops can relieve farmers of crop-destroying insects and plants, the opposite is showing to be true. Farmers in the Midwest are now battling superbugs and superweeds resistant to pesticides. They're damaging crops and farm equipment and costing the farmers more money in having to apply heavier doses of toxic pesticides." Pesticide and herbicide resistance is not unique to GMOs. It's evolution in action. There's even a paper describing how pulling weeds by hand can give rise to superweeds. Thinking that GMOs are to blame for pesticide/herbicide tolerance narrows the scope of the issue and deters efforts of finding genuine solutions to the problem. But hey, let's not let facts get in the way of NaturallySavvy's top ten list!

8. Patent issues: "At the core of the GMO industry is the corporate ownership of seed and seed patents. Companies like Monsanto are notorious for suing small farmers for saving seeds or if GMO crop drift pollinates on their land." Farmers moved away from saving seeds quite some time ago, primarily due to hybrid vigor, meaning that the seeds that farmers buy perform much better than the seeds they replant, and it's not just for GMOs. Additionally, farmers have plenty of options on the market. If they do not like the contracts that biotech companies such as Monsanto make them sign, then they can find different seeds. Monsanto has taken farmers to court for having broken this contract. Additionally, such contracts are not unique to GMOs, and farmers have been sued by companies other than Monsanto for replanting non-GMO seeds. As for lawsuits due to "GMO crop drift" pollination, I rebut your pure and utter BS with this lawsuit: OSGATA vs Monsanto, where Organic Food and Seed distributors together with anti-GMO activists tried to invalidate several of Monsanto's patents due to the possibility of a lawsuit due to inadvertent contamination. You read that correctly. Organic Food and Seed Distributors took Monsanto to court. When the judge asked them for evidence that Monsanto might sue them for inadvertent contamination "The appellants concede that Monsanto has never specifically alleged that they infringe its patents, nor threatened suit against them. Nevertheless, the appellants contend that in light of Monsanto’s evident history of aggressive assertion of its transgenic seed patents against other growers and sellers (144 suits and 700 settlements), they must assume that if they infringe those patents, they will also be sued—even if they only infringe inadvertently." Just to make that absolutely clear, Organic Food and Seed Distributors could find no evidence that Monsanto has threatened to sue them due to inadvertent contamination, and based their entire case (which was thrown out) on the possibility that Monsanto might sue them.

See what I did there, NaturallySavvy? I provided an original source that is relevant to the argument.

9. Corporate protection: "Earlier this year, the U.S. government passed a bill nicknamed the "Monsanto Protection Act." In essence, it grants biotech companies immunity from the courts, even if a judge determines it's unlawful to plant GMO crops, the companies can do it anyway." It's a scientific fact that if you add "Monsanto" to anything, it becomes 1048 times scarier. How do I know this? Well, truthiness is on my side and my gut tells me so.

You know what? I'm not even going to bother with this one, since the act already expired. If you're curious about it, read this article that goes over the legislation.

10. Prolific presence: "Whether or not GMOs are safe has yet to be determined, yet every day, millions of Americans eat them unknowingly due to the lack of labeling requirements. Are you a lab rat? Don't you at least have the right to know what you're eating?" You know what, NaturallySavvy? I think that your readers have the right to know when they're being deceived. Because when the leading scientific organizations in the world state that GMOs are no more risky than traditionally bred crops and when the scientific literature overwhelming supports the relative safety of GMOs, then a scientific consensus is formed. You're trying to scare your readers into buying whatever organic, non-GMO nonsense is for sale on your site. And no. I'm not a lab rat, any more than you're a lab rat for eating organically grown pluots. How long were those tested? Pluots have genes from plums AND APRICOTS!!! That's NOT natural! It took scientists decades to make pluots because these frankenfruits don't happen naturally. Don't you have the right to know what variety of pluots are in your organic Kashi? Oh, the horror!!! WON'T SOMEONE PLEASE THINK OF THE CHILDREN!!!!!

And NaturallySavvy? Despite having infinite combinations of scary words at your disposal and the ability to interject science-y words to give your list the aura of truthiness, your outline of arguments #1 and #10 on your list are the same. You should consider having a serious chat with the author of the piece. Wait... The author is also the Founder and "Chief Passionista" of your company??

No comment...

Sunday, June 26, 2016

The Institute for Responsible Technology's "10 Reasons to Avoid GMOs" List

Hello kind readers. Today I'm reviewing a post from the "Institute for Responsible Technology" entitled "10 Reasons to Avoid GMOs". For those of you who are not familiar with the IRT, it's a "charitable organization" run by some guy: it's not a government institute, it's not affiliated with a university, research facility, or hospital. And when I say that it's run by some guy, that's not an exaggeration: its founder is not a scientist and doesn't have a background in science, to the best of my knowledge, yet he's a leader in the anti-GMO movement, and information from his "Institute" is often used as authoritative, scientific evidence of GMO harm.
How can you protect your family from the dangers
of GMOs unless you buy the IRT's book???

Before even starting, I noted that there are no hyperlinks to references or even a list of references at the bottom of the IRT's post. But, since I've seen this list pop up with greater frequency, I'll still read the list and try to figure out what it's all about.

1) GMOs are unhealthy. The website claims: "The American Academy of Environmental Medicine (AAEM) urges doctors to prescribe non-GMO diets for all patients. They cite animal studies showing organ damage, gastrointestinal and immune system disorders, accelerated aging, and infertility. Human studies show how genetically modified (GM) food can leave material behind inside us, possibly causing long-term problems. Genes inserted into GM soy, for example, can transfer into the DNA of bacteria living inside us, and that the toxic insecticide produced by GM corn was found in the blood of pregnant women and their unborn fetuses."
  • The AAEM is an organization that believes that WiFi, "toxins" in vaccines, and water fluoridation are harmful. So not exactly the place I'd turn to for medical advice. In contrast, literally hundreds of scientific organizations have stated that crops generated through transgenesis (i.e GMOs) pose no greater risk than traditionally bred crops.
  • I have never seen a study stating that genes from GM soy have transferred into the DNA of bacteria living inside us. Note that the website says "can transfer". Here are a couple of similar statements of my own: "you could die in a sharknado". "Genetic material from a boa constrictor could transfer to a rat that it ingests, creating a hybrid ratstrictor". You get the idea... All my hypothetical scenarios have as much evidence to support them as the statement about GMOs from the IRT,
  • Regarding the study finding Bt in the blood of pregnant women, that study has been found to be deeply flawed, because the method the authors used to detect Bt was made for plant cells, not mammalian ones.
The IRT continues to highlight the dangers of GMOs by pointing out correlations: since GMOs have been introduced, the number of chronic health problems has increased. But there's no evidence that one causes the other. Could it possibly be that our population is just living longer? Or that we're getting better at diagnoses of many disorders/diseases?

Summary: No credible evidence is provided demonstrating that GMOs are unhealthy.

2) GMOs contaminate - forever. Just when I thought the IRT couldn't get more dramatic, it goes on to say: "Self-propagating GMO pollution will outlast the effects of global warming and nuclear waste." The IRT claims that this genetic pollution is affecting all of us, particularly organic farmers. I've never heard of a farmer losing organic certification in the US/Canada due to "GMO contamination", maybe because there was such a thing as "cross-pollination" before GMOs existed and farmers who are concerned about this take proper measures to prevent it from happening by establishing appropriate buffer zones with surrounding farms. So unless the IRT can establish that GM pollen is some sort of super-pollen that spreads further or pollinates more easily or that the pollen will survive for all eternity, then I can't really buy this argument. To support my statement, here's the USDA's latest report on coexistence of GM crops and non-GM crops. I know!! Isn't it crazy that the organization that certifies organic farms actually has guidelines on how organic farmers can coexist with GM crops?? The report also contains information on surveys conducted by the USDA to determine if farmers have experienced economic losses due to GMO contamination. However, the report doesn't distinguish or examine how these losses occurred: was it due to cross-pollination in the field, contamination during harvest, during transportation, or storage, for example? Despite the flaws in their numbers, it's still incredibly low: only 87 farmers experienced losses due to GMO contamination between 2011 and 2014 in 20 states surveyed. 

3) GMOs increase herbicide use. The website claims "Between 1996 and 2008, US farmers sprayed an extra 383 million pounds of herbicide on GMOs." The amount of herbicide used isn't a very useful statistic. Is it because we have more fields dedicated to herbicide tolerant crops? Was there a decrease in other herbicides? Were the other herbicides harsher on the environment and have a more toxic profile? The article goes on to say: "Roundup, for example, is linked with sterility, hormone disruption, birth defects, and cancer." There's no evidence for any of this. The EPA examined whether glyphosate is linked to hormone disruption and found "no convincing evidence" to support it. Regarding Round-Up and cancer, "a Joint Meeting of the Food and Agriculture Organization of the United Nations (FAO) Panel of Experts on Pesticide Residues in Food and the Environment and the World Health Organization (WHO) Core Assessment Group on Pesticide Residues (JMPR)" recently stated that "glyphosate is unlikely to pose a carcinogenic risk to humans from exposure through the diet".

4) Genetic engineering creates dangerous side effects. The article claims that by "mixing genes from totally unrelated species, genetic engineering unleashes a host of unpredictable side effects". There are several papers that have done comparisons on unanticipated consequences/changes of GMOs and traditionally bred crops (see here, here, and here). In each case, the transgenic crop had fewer unanticipated changes in DNA and/or RNA than the traditionally bred crop. To read more about these studies, see this post. So perhaps the IRT is concerned about the ratstrictor or something, otherwise I'm not sure what they're referring to. 

5) Government oversight is dangerously lax.
 The paragraph explains that GMO safety studies are not required. Technically, this is true. All GMO safety studies and submissions are voluntary. However, to date, I don't know of any GMOs that haven't gone through FDA approval. As such, the voluntary testing of GMOs is only on paper, not in practice: in practice it is mandatory. Surprisingly, the FDA's process for approving GMOs is one that was meant to be applied to all novel crops. This op-ed from Nature explains: "[The FDA] recommended through a guidance document — not a regulation — that developers of foods derived from 'new plant varieties' undergo a voluntary consultation process with the agency. This guidance did not exclude non-GE new plant varieties. In practice, however, developers of conventionally bred foods seem not to have undergone such consultations, whereas the FDA has been notified of more than 100 foods derived from GE plants (see" This "voluntary but not really voluntary" aspect of the regulatory process of GMOs is one that, I believe, should change because it can be exploited by organizations such as IRT to imply that safety studies are not conducted. Not only is the FDA involved, but EPA and USDA-APHIS are also involved in the regulatory process, depending on the trait. However, Biotech Regulation in US is being restructured to make it simpler, and to adapt it to newer crop modification techniques.

6) The biotech industry uses “tobacco science” to claim product safety. IRT's point here is to suggest that the only scientists claiming that GMOs are safe are those that are paid off by large companies, whereas independent scientists know that GMOs are dangerous. They draw a parallel between scientists who claim that GMOs are safe and scientists who claimed that tobacco is safe. I was curious as to how the scientific consensus on tobacco safety was obtained, and I found this paper (H/T Skepticalraptor's post on the topic). To generate a scientific consensus on a topic, there needs to be enough research to support a conclusion. The paper I've linked to highlights that it took decades to generate a consensus on whether tobacco is safe or not: first, it took a few years to observe that there was an increasing incidence of lung cancer, and it wasn't until the 50's that case-control studies were conducted associating cigarette smoking with cancer. After several such studies were conducted, the medical organizations of the time issued statements highlighting the association. The tobacco industry defended the safety of their products and funded research to demonstrate this, but this stands in stark contrast with the safety of GMOs: the scientific consensus on GMOs is supported, not only by the industry, but also by dozens of reputable scientific organizations around the globe. The scientific consensus on cigarettes was not upheld by the tobacco industry. Basically, if the tobacco industry can't pay off the WHO to say that smoking cigarettes is safe, then neither can Monsanto. You can read more about the consensus on tobacco, how it was opposed, and how researchers within the tobacco industry spoke out here.

7) Independent research and reporting is attacked and suppressed.
 IRT quotes an article from Nature from 2009 about how scientists who show the harm of GMOs are attacked or are censured. Here's the full article from Nature and I'd like you to read it to see just how much cherry-picking was done by IRT. The article highlights how research on GMOs that generate results suggestive of harm elicit two responses: from the anti-GMO camp, the information is used to campaign against the crops and to drive policy; from the pro-GMO camp, there is swift criticism of these papers to highlight any flaws there may be. The article interviews scientists who have been criticized and those who conducted the criticism and provides perspectives from both sides. The pro-GMO camp basically states that papers on controversial topics need to be reviewed more carefully, since they can and are used by activists to further their agendas, even if the papers are heavily flawed (which is ironic, because I'm reviewing a piece from the IRT which does exactly that). As for IRT's claim that research is being "suppressed", I'll need a citation for this.

8) GMOs harm the environment. The IRT claims: "GM crops and their associated herbicides can harm birds, insects, amphibians, marine ecosystems, and soil organisms. They reduce bio-diversity, pollute water resources, and are unsustainable." However, there's no evidence to support this. The National Academy of Sciences (NAS) recently released their report reviewing GMOs and stated: "Overall, the committee found no conclusive evidence of cause-and-effect relationships between GE crops and environmental problems." The NAS' answer is more nuanced, provides many examples of why there's no conclusive evidence, and I encourage you to review the document.

9) GMOs do not increase yields, and work against feeding a hungry world.
The NAS report states that GMOs have not really increased yields, although the IRT doesn't use this document to make this statement. It's important to note that none of the GMOs that are currently on the market were directly designed to increase yields. The NAS' summary states that, although there is disagreement on whether the current traits on the market have improved yields, there's no data to suggest that the increase in yields that farmers have observed due to GMOs are different from the increase in yields that farmers have observed in conventional farming. However, from my perspective, not having seen an increase in yields isn't a reason to shun GMOs: transgenesis gives agronomists the ability to create crops designed to withstand stresses or be more efficient, and using such traits we may see increases in yields. The IRT makes similar statements regarding current GMOs and their ability to feed the world. Again, none of the GMOs on the market are currently fortified, but transgenic crops have the potential to help reduce malnutrition and there are a few projects that have made lots of headway.

10) By avoiding GMOs, you contribute to the coming tipping point of consumer rejection, forcing them out of our food supply. Ah... We finally get to the heart of the matter. The IRT doesn't want to just label GMOs, but to get rid of them entirely from the food supply. The IRT makes this really convenient, by making a handy dandy shopping guide for people who want to avoid GMOs. And guess who sponsors the guide?!? ZOMG! Food companies that want you to buy their food!!!!